Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 615
Filtrar
1.
Opt Lett ; 49(7): 1725-1728, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560847

RESUMO

Ultrasound coupling is one of the critical challenges for traditional photoacoustic (or optoacoustic) microscopy (PAM) techniques transferred to the clinical examination of chronic wounds and open tissues. A promising alternative potential solution for breaking the limitation of ultrasound coupling in PAM is photoacoustic remote sensing (PARS), which implements all-optical non-interferometric photoacoustic measurements. Functional imaging of PARS microscopy was demonstrated from the aspects of histopathology and oxygen metabolism, while its performance in hemodynamic quantification remains unexplored. In this Letter, we present an all-optical thermal-tagging flowmetry approach for PARS microscopy and demonstrate it with comprehensive mathematical modeling and ex vivo and in vivo experimental validations. Experimental results demonstrated that the detectable range of the blood flow rate was from 0 to 12 mm/s with a high accuracy (measurement error:±1.2%) at 10-kHz laser pulse repetition rate. The proposed all-optical thermal-tagging flowmetry offers an effective alternative approach for PARS microscopy realizing non-contact dye-free hemodynamic imaging.


Assuntos
Técnicas Fotoacústicas , Tecnologia de Sensoriamento Remoto , Técnicas Fotoacústicas/métodos , Reologia/métodos , Ultrassonografia/métodos , Microscopia/métodos
2.
Acta Pharm Sin B ; 14(4): 1494-1507, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572094

RESUMO

Histone methylation plays crucial roles in regulating chromatin structure and gene transcription in epigenetic modifications. Lysine-specific demethylase 1 (LSD1), the first identified histone demethylase, is universally overexpressed in various diseases. LSD1 dysregulation is closely associated with cancer, viral infections, and neurodegenerative diseases, etc., making it a promising therapeutic target. Several LSD1 inhibitors and two small-molecule degraders (UM171 and BEA-17) have entered the clinical stage. LSD1 can remove methyl groups from histone 3 at lysine 4 or lysine 9 (H3K4 or H3K9), resulting in either transcription repression or activation. While the roles of LSD1 in transcriptional regulation are well-established, studies have revealed that LSD1 can also be dynamically regulated by other factors. For example, the expression or activity of LSD1 can be regulated by many proteins that form transcriptional corepressor complexes with LSD1. Moreover, some post-transcriptional modifications and cellular metabolites can also regulate LSD1 expression or its demethylase activity. Therefore, in this review, we will systematically summarize how proteins involved in the transcriptional corepressor complex, various post-translational modifications, and metabolites act as regulatory factors for LSD1 activity.

3.
Phys Imaging Radiat Oncol ; 30: 100573, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585371

RESUMO

Background and purpose: Magnetic Resonance Imaging (MRI)-guided Stereotactic body radiotherapy (SBRT) treatment to prostate bed after radical prostatectomy has garnered growing interests. The aim of this study is to evaluate intra-fractional anatomic and dose/volume metric variations for patients receiving this treatment. Materials and methods: Nineteen patients who received 30-34 Gy in 5 fractions on a 0.35T MR-Linac were included. Pre- and post-treatment MRIs were acquired for each fraction (total of 75 fractions). The Clinical Target Volume (CTV), bladder, rectum, and rectal wall were contoured on all images. Volumetric changes, Hausdorff distance, Mean Distance to Agreement (MDA), and Dice similarity coefficient (DSC) for each structure were calculated. Median value and Interquartile range (IQR) were recorded. Changes in target coverage and Organ at Risk (OAR) constraints were compared and evaluated using Wilcoxon rank sum tests at a significant level of 0.05. Results: Bladder had the largest volumetric changes, with a median volume increase of 48.9 % (IQR 28.9-76.8 %) and a median MDA of 5.1 mm (IQR 3.4-7.1 mm). Intra-fractional CTV volume remained stable with a median volume change of 1.2 % (0.0-4.8 %). DSC was 0.97 (IQR 0.94-0.99). For the dose/volume metrics, there were no statistically significant changes observed except for an increase in bladder hotspot and a decrease of bladder V32.5 Gy and mean dose. The CTV V95% changed from 99.9 % (IQR 98.8-100 %) to 99.6 % (IQR 93.9-100 %). Conclusion: Despite intra-fractional variations of OARs, CTV coverage remained stable during MRI-guided SBRT treatments for the prostate bed.

4.
Environ Microbiol Rep ; 16(2): e13248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581137

RESUMO

Sulphate-reducing bacteria (SRB) are the main culprits of microbiologically influenced corrosion in water-flooding petroleum reservoirs, but some sulphur-oxidising bacteria (SOB) are stimulated when nitrate and oxygen are injected, which control the growth of SRB. This study aimed to determine the distributions of SRB and SOB communities in injection-production systems and to analyse the responses of these bacteria to different treatments involving nitrate and oxygen. Desulfovibrio, Desulfobacca, Desulfobulbus, Sulfuricurvum and Dechloromonas were commonly detected via 16S rRNA gene sequencing. Still, no significant differences were observed for either the SRB or SOB communities between injection and production wells. Three groups of water samples collected from different sampling sites were incubated. Statistical analysis of functional gene (dsrB and soxB) clone libraries and quantitative polymerase chain reaction showed that the SOB community structures were more strongly affected by the nitrate and oxygen levels than SRB clustered according to the sampling site; moreover, both the SRB and SOB community abundances significantly changed. Additionally, the highest SRB inhibitory effect and the lowest dsrB/soxB ratio were obtained under high concentrations of nitrate and oxygen in the three groups, suggesting that the synergistic effect of nitrate and oxygen level was strong on the inhibition of SRB by potential SOB.


Assuntos
Desulfovibrio , Petróleo , Nitratos , Sulfatos , Água , RNA Ribossômico 16S/genética , Bactérias , Desulfovibrio/genética , Compostos Orgânicos , Enxofre , Oxirredução
5.
Plant Cell ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635962

RESUMO

Protein S-acylation catalyzed by protein S-acyl transferases (PATs) is a reversible lipid modification regulating protein targeting, stability, and interaction profiles. PATs are encoded by large gene families in plants, and many proteins including receptor-like cytoplasmic kinases (RLCKs) and receptor-like kinases (RLKs) are subject to S-acylation. However, few PATs have been assigned substrates, and few S-acylated proteins have known upstream enzymes. We report that Arabidopsis (Arabidopsis thaliana) class A PATs redundantly mediate pollen tube guidance and participate in the S-acylation of POLLEN RECEPTOR KINASE1 (PRK1) and LOST IN POLLEN TUBE GUIDANCE1 (LIP1), a critical RLK or RLCK for pollen tube guidance, respectively. PAT1, PAT2, PAT3, PAT4, and PAT8, collectively named PENTAPAT for simplicity, are enriched in pollen and show similar subcellular distribution. Functional loss of PENTAPAT reduces seed set due to male gametophytic defects. Specifically, pentapat pollen tubes are compromised in directional growth. We determine that PRK1 and LIP1 interact with PENTAPAT, and their S-acylation is reduced in pentapat pollen. The plasma membrane (PM) association of LIP1 is reduced in pentapat pollen, whereas point mutations reducing PRK1 S-acylation affect its affinity with its interacting proteins. Our results suggest a key role of S-acylation in pollen tube guidance through modulating PM receptor complexes.

6.
J Genet Genomics ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642801

RESUMO

Hetero-tetrameric soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) complexes are critical for vesicle-target membrane fusion within the endomembrane system of eukaryotic cells. SNARE assembly involves four different SNARE motifs, Qa, Qb, Qc, and R, provided by three or four SNARE proteins. YKT6 is an atypical R-SNARE that lacks a transmembrane domain and is involved in multiple vesicle-target membrane fusions. Although YKT6 is evolutionarily conserved and essential, its function and regulation in different phyla seem distinct. Arabidopsis YKT61, the yeast and metazoan YKT6 homolog, is essential for gametophytic development, plays a critical role in sporophytic cells, and mediates multiple vesicle-target membrane fusion. However, its molecular regulation is unclear. We report here that YKT61 is S-acylated. Abolishing its S-acylation by a C195S mutation dissociates YKT61 from endomembrane structures and causes its functional loss. Although interacting with various SNARE proteins, YKT61 functions not as a canonical R-SNARE but coordinates with other R-SNAREs to participates in the formation of SNARE complexes. Phylum-specific molecular regulation of YKT6 may be evolved to allow more efficient SNARE-assembly in different eukaryotic cells.

7.
Cancer Lett ; : 216860, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583650

RESUMO

Cancer is the result of genetic abnormalities that cause normal cells to grow into neoplastic cells. Cancer is characterized by several distinct features, such as uncontrolled cell growth, extensive spreading to other parts of the body, and the ability to resist treatment. The scientists have stressed the development of nanostructures as novel therapeutic options in suppressing cancer, in response to the emergence of resistance to standard medicines. One of the specific mechanisms with dysregulation during cancer is autophagy. Nanomaterials have the ability to specifically carry medications and genes, and they can also enhance the responsiveness of tumor cells to standard therapy while promoting drug sensitivity. The primary mechanism in this process relies on autophagosomes and their fusion with lysosomes to break down the components of the cytoplasm. While autophagy was initially described as a form of cellular demise, it has been demonstrated to play a crucial role in controlling metastasis, proliferation, and treatment resistance in human malignancies. The pharmacokinetic profile of autophagy modulators is poor, despite their development for use in cancer therapy. Consequently, nanoparticles have been developed for the purpose of delivering medications and autophagy modulators selectively and specifically to the cancer process. Furthermore, several categories of nanoparticles have demonstrated the ability to regulate autophagy, which plays a crucial role in defining the biological characteristics and response to therapy of tumor cells.

8.
Int J Nanomedicine ; 19: 2957-2972, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549840

RESUMO

Introduction: Nano-mesoporous bioactive glass and RGD peptide-coated collagen membranes have great potential in wound healing. However, the application of their compound has not been further studied. Our purpose is to prepare a novel bioactive collagen scaffold containing both NMBG stent and adhesion peptides (BM), which then proves its promising prospect the assessment of physical properties, biocompatibility, GSK-3ß/ß-catenin signaling axis and toxicological effects. Methods: The structural and morphological changes of BM were analyzed using scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). In vivo, wound healing of BM was assessed in SD rats through dynamic monitoring and calculation of wound healing rate. Immunohistofluorescence (IHF), H&E, and Masson staining were utilized; in vitro, primary cell culture, and a variety of assays including CCK-8, Transwell, Scratch, Immunocytofluorescence (ICF), and Western blot (WB) were performed, both for morphology and molecular analysis. Results and Discussion: Preparation of BM involved attaching NMBG to RGD-exposed collagen while avoiding the use of toxic chemical reagents. BM exhibited a distinctive superficial morphology with increased Si content, indicating successful NMBG attachment. In vivo studies on SD rats demonstrated the superior wound healing capability of BM, as evidenced by accelerated wound closure, thicker epithelial layers, and enhanced collagen deposition compared to the NC group. Additionally, BM promoted skin fibroblast migration and proliferation, possibly through activation of the GSK-3ß/ß-catenin signaling axis, which was crucial for tissue regeneration. This study underscored the potential of BM as an effective wound-healing dressing. Conclusion: A new method for synthesizing ECM-like membranes has been developed using nano-mesoporous bioactive glass and collagen-derived peptides. This approach enhances the bioactivity of biomaterials through surface functionalization and growth factor-free therapy.


Assuntos
Biomimética , beta Catenina , Ratos , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , beta Catenina/metabolismo , Ratos Sprague-Dawley , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos , Proliferação de Células , Peptídeos/farmacologia
9.
J Pain Res ; 17: 931-939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469556

RESUMO

Purpose: To explore the benefits of ultrasound-guided intermittent thoracic paravertebral block (TPVB) combined with intravenous analgesia (PCIA) in alleviating postoperative nausea and vomiting (PONV) during video-assisted thoracic surgery (VATS). Patients and Methods: 120 patients with lung carcinoma undergoing VATS were included and divided into three groups: group S (single TPVB+PCIA), group I (intermittent TPVB+PCIA), and group P (PCIA). The patients' NRS scores, postoperative hydromorphone hydrochloride consumption, and intramuscular injection of bucinnazine hydrochloride were recorded. The incidence of PONV and complications were documented. Results: Compared with the group P, both group I and group S had significantly lower static NRS scores from 1-48 hours after the operation (P <0.05), and the dynamic NRS score of group I at the 1-48 hours after the operation were significantly decreased (P <0.05). Compared with the group P, the proportion of patients with PONV in group I was significantly lower (P <0.05), while there was no significant difference in group S. Moreover, the hospitalization period of patients in group I was significantly reduced compared with the other two groups (P <0.01), and the patient satisfaction was significantly increased compared with the group P (P <0.05). Conclusion: Intermittent TPVB combined with PCIA can reduce the postoperative pain and the occurrence of PONV.

10.
JMIR Public Health Surveill ; 10: e48617, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386403

RESUMO

BACKGROUND: The World Health Organization emphasizes the importance of completely voluntary blood donation to maintain safe and sustainable blood supplies. However, the benefits of blood donation for donors, such as reducing the risk of disease, remain a topic of debate due to the existence of the healthy donor effect (HDE). This effect arises because of inherent health differences between blood donors and the general population, and it is also considered a methodological issue. OBJECTIVE: This study aims to generate a more detailed health profile of blood donors from a donor cohort study to mitigate and quantify the HDE and properly interpret the association between blood donation and disease outcomes among blood donors. METHODS: A retrospective cohort study was conducted between January 2012 and December 2018 among donors before their first donation. One-to-one propensity score matching was conducted through a random selection of individuals without any history of blood donation, as reported from their electronic health records. We conducted a Poisson regression between blood donors and non-blood donors before the first donation to estimate the adjusted incidence rate ratio (AIRR) of selected blood donation-related diseases, as defined by 13 categories of International Classification of Diseases, Tenth Revision (ICD-10) codes. RESULTS: Of the 0.6 million blood donors, 15,115 had an inpatient record before their first donation, whereas 17,356 non-blood donors had an inpatient record. For the comparison between blood donors and the matched non-blood donors, the HDE (the disease incidence rate ratio between non-blood donors and blood donors) was an AIRR of 1.152 (95% CI 1.127-1.178; P<.001). Among disease categories not recommended for blood donation in China, the strongest HDE was observed in the ICD-10 D50-D89 codes, which pertain to diseases of the blood and blood-forming organs as well as certain disorders involving the immune mechanism (AIRR 3.225, 95% CI 2.402-4.330; P<.001). After age stratification, we found that people who had their first blood donation between 46-55 years old had the strongest HDE (AIRR 1.816, 95% CI 1.707-1.932; P<.001). Both male and female donors had significant HDE (AIRR 1.082, 95% CI 1.05-1.116; P=.003; and AIRR 1.236, 95% CI 1.196-1.277; P<.001, respectively) compared with matched non-blood donors. CONCLUSIONS: : Our research findings suggest that the HDE is present among blood donors, particularly among female donors and those who first donated blood between the ages of 46 and 55 years. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2200055983; https://www.chictr.org.cn/showproj.html?proj=51760.


Assuntos
Doadores de Sangue , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Longitudinais , Estudos de Coortes , Estudos Retrospectivos , China/epidemiologia
11.
Vox Sang ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419273

RESUMO

BACKGROUND AND OBJECTIVES: Diagnostic blood loss is a significant factor in the development of anaemia in neonates with very low birth weight. This study aimed to assess the clinical efficacy of intervention approaches involving varying diagnostic blood loss and red blood cell transfusion volumes in neonates with very low birth weights experiencing anaemia during hospitalization. MATERIALS AND METHODS: A total of 785 newborns with anaemia weighing less than 1500 g were enrolled from 32 hospitals in China. The study involved monitoring diagnostic blood loss and red blood cell transfusion and evaluating relevant interventions such as red blood cell transfusion and clinical outcomes. Three intervention approaches were established based on the difference between blood loss and transfusion (Intervention Approaches 0, 1 and 2). The primary outcomes measured were unsatisfactory weight gain during hospitalization and neonatal mortality. The secondary outcomes included related complications. RESULTS: In the non-hospital-acquired anaemia group, Intervention Approach 2 had the highest incidence of below-normal weight gain (odds ratio [OR]: 3.019, 95% confidence interval [CI]: 1.081-8.431, p = 0.035). Multivariate analysis revealed that Intervention Approach 1 had a protective effect on weight gain. In the hospital-acquired anaemia group, Intervention Approach 2 had the highest incidence of below-normal weight gain (OR: 3.335, 95% CI: 1.785-6.234, p = 0.000) and mortality (OR: 5.341, 95% CI: 2.449-11.645, p = 0.000), while Intervention Approach 1 had the lowest incidence of intraventricular haemorrhage. Intervention Approach 1 demonstrated favourable outcomes in both anaemia groups. CONCLUSION: Intervention Approach 1 improved weight gain and reduced mortality and complications in both the non-hospital-acquired and hospital-acquired anaemia groups.

12.
Sci Total Environ ; 919: 170530, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38311081

RESUMO

Chalcopyrite, renowned for its distinctive mixed redox-couple characteristics, exhibits excellent electron transfer properties both on its surface and within its crystal structure. This unique characteristic has attracted significant attention in various fields, including optics, electronics, and magnetism, as well as demonstrated remarkable catalytic efficacy in the environmental field. The rapid and effective electron transfer capability of a catalyst is crucial for advanced oxidation processes (AOPs). However, the performance of CuFeS2 in AOPs is hindered by its low electron transfer efficacy. This review aims to summarize the key steps and mechanisms of chalcopyrite-induced AOPs and provide strategies for enhancing effective electron transfer efficacies by controlling the structure and function of synthetic/natural chalcopyrite. These strategies include enhancing the catalytic performance of chalcopyrite and constructing composites to enhance catalytic activity (e.g., chelating agents, heterojunctions). Additionally, the factors influencing the generation of reactive oxygen species in chalcopyrite-induced AOPs are investigated, such as the types and properties of oxidants (e.g., H2O2, peroxymonocarbonate), the microstructure of catalysts, and reaction conditions in catalytic systems (e.g., pH values, dosage, temperature). Future perspectives on the applications of chalcopyrite are presented at the end of this paper. Overall, this review assists in narrowing the scope of chalcopyrite studies in AOPs and aids researchers in optimizing synthetic/natural catalysts for contaminant treatment.

13.
Biosensors (Basel) ; 14(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38391983

RESUMO

Nanomaterials are desirable for sensing applications. Therefore, MnO2 nanosheets and nitrogen-doped carbon dots (NCDs) were used to construct a ratiometric biosensor for quantification of 2,4-dichlorophenoxyacetic acid. The MnO2 nanosheets drove the oxidation of colorless o-phenylenediamine to OPDox, which exhibits fluorescence emission peaks at 556 nm. The fluorescence of OPDox was efficiently quenched and the NCDs were recovered as the ascorbic acid produced by the hydrolyzed alkaline phosphatase (ALP) substrate increased. Owing to the selective inhibition of ALP activity by 2,4-D and the inner filter effect, the fluorescence intensity of the NCDs at 430 nm was suppressed, whereas that at 556 nm was maintained. The fluorescence intensity ratio was used for quantitative detection. The linear equation was F = 0.138 + 3.863·C 2,4-D (correlation coefficient R2 = 0.9904), whereas the limits of detection (LOD) and quantification (LOQ) were 0.013 and 0.040 µg/mL. The method was successfully employed for the determination of 2,4-D in different vegetables with recoveries of 79%~105%. The fluorescent color change in the 2,4-D sensing system can also be captured by a smartphone to achieve colorimetric detection by homemade portable test kit.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Óxidos , Compostos de Manganês , Nitrogênio , Carbono , Limite de Detecção , Ácido 2,4-Diclorofenoxiacético , Corantes Fluorescentes
14.
Biomed Pharmacother ; 173: 116240, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401512

RESUMO

Abnormally high expression of lysine-specific demethylase 1 A (LSD1) and DCN1 plays a vital role in the occurrence, development, and poor prognosis of non-small cell lung cancer (NSCLC). Accumulating evidence has shown that the development of small-molecule inhibitors dually targeting LSD1 and the DCN1-UBC12 interaction probably have therapeutic promise for cancer therapy. This work reported that WS-384 dually targeted LSD1 and DCN1-UBC12 interactions and evaluated its antitumor effects in vitro and in vivo. Specifically, WS-384 inhibited A549 and H1975 cells viability and decreased colony formation and EdU incorporation. WS-384 could also trigger cell cycle arrest, DNA damage, and apoptosis. Moreover, WS-384 significantly decreased tumor weight and volume in A549 xenograft mice. Mechanistically, WS-384 increased the gene and protein level of p21 by suppressing the neddylation of cullin 1 and decreasing H3K4 demethylation at the CDKN1A promoter. The synergetic upregulation of p21 contributed to cell cycle arrest and the proapoptotic effect of WS-384 in NSCLC cells. Taken together, our proof of concept studies demonstrated the therapeutic potential of dual inhibition of LSD1 and the DCN1-UBC12 interaction for the treatment of NSCLC. WS-384 could be used as a lead compound to develop new dual LSD1/DCN1 inhibitors for the treatment of human diseases in which LSD1 and DCN1 are dysregulated.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular , Enzimas de Conjugação de Ubiquitina/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Histona Desmetilases , Linhagem Celular Tumoral
15.
Bioresour Technol ; 398: 130472, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387841

RESUMO

As toxic contaminants, aromatic compounds are widespread in most environmental matrices, and bioenzymatic catalysis plays a critical role in the degradation of xenobiotics. Here, a thermophillic aromatic hydrocarbon degrader Aeribacillus pallidus HB-1 was found. Bioinformatic analysis of the HB-1 genome revealed two ring-cleaving extradiol dioxygenases (EDOs), among which, EDO-0418 was assigned to a new subfamily of type I.1 EDOs and exhibited a broad substrate specificity, particularly towards biarylic substrate. Both EDOs exhibited optimal activities at elevated temperatures (55 and 65 °C, respectively) and showed remarkable thermostability, pH stability, metal ion resistance and tolerance to chemical reagents. Most importantly, simulated wastewater bioreactor experiments demonstrated efficient and uniform degradation performance of mixed aromatic substrates under harsh environments by the two enzymes combined for potential industrial applications. The unveiling of two thermostable dioxygenases with broad substrate specificities and stress tolerance provides a novel approach for highly efficient environmental bioremediation using composite enzyme systems.


Assuntos
Bacillaceae , Dioxigenases , Hidrocarbonetos Aromáticos , Dioxigenases/genética , Dioxigenases/química , Dioxigenases/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Metais
16.
BMC Pediatr ; 24(1): 136, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383331

RESUMO

OBJECTIVE: To explore the effect of repetitive transcranial magnetic stimulation (rTMS)-assisted training on lower limb motor function in children with hemiplegic cerebral palsy (HCP). METHOD: Thirty-one children with HCP who met the inclusion criteria were selected and randomly divided into a control group (n = 16) and an experimental group (n = 15). The control group received routine rehabilitation treatment for 30 min each time, twice a day, 5 days a week for 4 weeks. Based on the control group, the experimental group received rTMS for 20 min each time, once a day, 5 days a week for 4 weeks. The outcome measures included a 10-metre walk test (10MWT), a 6-minute walk distance (6MWD) test, D- and E-zone gross motor function measurements (GMFM), the symmetry ratio of the step length and stance time and the muscle tone of the triceps surae and the hamstrings (evaluated according to the modified Ashworth scale), which were obtained in both groups of children before and after treatment. RESULTS: After training, the 10MWT (P < 0.05), 6MWD (P < 0.01), GMFM (P < 0.001) and the symmetry ratio of the step length and stance time of the two groups were significantly improved (P < 0.05), there was more of an improvement in the experimental group compared with the control group. There was no significant change in the muscle tone of the hamstrings between the two groups before and after treatment (P > 0.05). After treatment, the muscle tone of the triceps surae in the experimental group was significantly reduced (P < 0.05), but there was no significant change in the control group (P > 0.05). CONCLUSION: Repetitive TMS-assisted training can improve lower limb motor function in children with HCP.


Assuntos
Paralisia Cerebral , Estimulação Magnética Transcraniana , Criança , Humanos , Hemiplegia/etiologia , Extremidade Inferior , Caminhada
17.
Phys Rev E ; 109(1-1): 014137, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366475

RESUMO

The mechanical strain can control the frequency of two-level atoms in amorphous material. In this work, we would like to employ two coupled two-level atoms to manipulate the magnitude and direction of heat transport by controlling mechanical strain to realize the function of a thermal switch and valve. It is found that a high-performance heat diode can be realized in the wide piezo voltage range at different temperatures. We also discuss the dependence of the rectification factor on temperatures and couplings of heat reservoirs. We find that the higher temperature differences correspond to the larger rectification effect. The asymmetry system-reservoir coupling strength can enhance the magnitude of heat transfer, and the impact of asymmetric and symmetric coupling strength on the performance of the heat diode is complementary. It may provide an efficient way to modulate and control heat transport's magnitude and flow preference. This work may give insight into designing and tuning quantum heat machines.

18.
Front Microbiol ; 15: 1343227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304712

RESUMO

Cutibacterium granulosum, a commensal bacterium found on human skin, formerly known as Propionibacterium granulosum, rarely causes infections and is generally considered non-pathogenic. Recent research has revealed the transferability of the multidrug-resistant plasmid pTZC1 between C. granulosum and Cutibacterium acnes, the latter being an opportunistic pathogen in surgical site infections. However, there is a noticeable lack of research on the genome of C. granulosum, and the genetic landscape of this species remains largely uncharted. We investigated the genomic features and evolutionary structure of C. granulosum by analyzing a total of 30 Metagenome-Assembled Genomes (MAGs) and isolate genomes retrieved from public databases, as well as those generated in this study. A pan-genome of 6,077 genes was identified for C. granulosum. Remarkably, the 'cloud genes' constituted 62.38% of the pan-genome. Genes associated with mobilome: prophages, transposons [X], defense mechanisms [V] and replication, recombination and repair [L] were enriched in the cloud genome. Phylogenomic analysis revealed two distinct mono-clades, highlighting the genomic diversity of C. granulosum. The genomic diversity was further confirmed by the distribution of Average Nucleotide Identity (ANI) values. The functional profiles analysis of C. granulosum unveiled a wide range of potential Antibiotic Resistance Genes (ARGs) and virulence factors, suggesting its potential tolerance to various environmental challenges. Subtype I-E of the CRISPR-Cas system was the most abundant in these genomes, a feature also detected in C. acnes genomes. Given the widespread distribution of C. granulosum strains within skin microbiome, our findings make a substantial contribution to our broader understanding of the genetic diversity, which may open new avenues for investigating the mechanisms and treatment of conditions such as acne vulgaris.

19.
IEEE J Biomed Health Inform ; 28(4): 1971-1981, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38265900

RESUMO

EEG signal classification using Riemannian manifolds has shown great potential. However, the huge computational cost associated with Riemannian metrics poses challenges for applying Riemannian methods, particularly in high-dimensional feature data. To address these, we propose an efficient ensemble method called MLCSP-TSE-MLP, which aims to reduce the computational cost while achieving superior performance. MLCSP of the ensemble utilizes a Riemannian graph embedding strategy to learn intrinsic low-dimensional sub-manifolds, enhancing discrimination. TSE uses the Euclidean mean as the reference point for tangent space mapping and reducing computational cost. Finally, the ensemble incorporates the MLP classifier to offer improved classification performance. Classification results conducted on three datasets demonstrate that MLCSP-TSE-MLP achieves significant superior performance compared to various competing methods. Notably, the MLCSP-TSE module achieves a remarkable increase in training speed and exhibits much lower test time compared to traditional Riemannian methods. Based on these results, we believe that the proposed MLCSP-TSE-MLP is a powerful tool for handling high-dimensional data and holds great potential for practical applications.


Assuntos
Algoritmos , Aprendizado de Máquina , Humanos , Eletroencefalografia/métodos
20.
Environ Res ; 247: 118258, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262512

RESUMO

Developing efficient catalytic systems for water contamination removal is a topic of great interest. However, the use of heterogeneous catalysts faces challenges due to insufficient active sites and electron cycling. In this study, results from first-principles calculations demonstrate that dual reaction centers (DRCs) are produced around the Cu and Mn sites in Cu1.0/Mn1.0-ZnO due to the electronegativity difference. Experimental results reveal the material with DRCs greatly enhances electron transfer efficiency and significantly impacts the oxidation and reduction of peroxymonosulfate (PMS). In addition, the self-consistent potential correction (SCPC) method was introduced to correct the energy and charge of charged periodic systems simulating a catalytic process, resulting in more precise catalytic results. Specifically, the material exhibits a preference for adsorbing negatively charged PMS anions at electron-deficient Mn sites, facilitating PMS oxidation for the generation of 1O2, and PMS reduction around the electron-rich Cu for the formation of •OH and SO4•-. The major reactive oxygen species is 1O2, showcasing effective performance in various degradation systems. Overall, our work provides novel insights into the persulfate-based heterogeneous catalytic oxidation process, paving the way for the development of high-performance catalytic systems for water purification.


Assuntos
Óxido de Zinco , Peróxidos , Espécies Reativas de Oxigênio , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...